Bundesanstalt für Materialforschung und -prüfung (BAM)
Material science problems have intrinsically multiscale and multiphysics characters, and require us to employ a combination of methods on different time and length scales to resolve critical features. Normally creating workflows that connect data in multiple scales and various methods is a cumbersome task. Pyiron, an integrated development environment (IDE) for material science, contains modules for the atomistic as well as continuum scale that make a seamless connection possible. To this end, it provides a high-level coherent language in a unified workflow platform to study materials, for example, with LAMMPS simulations in the same framework as crystal plasticity codes such as DAMASK. The latter is integrated such that all required input files can be generated, the analysis can be executed and the routines of the DAMASK post-processing library can be employed.
One example of a multi-scale workflow is the simulation of a multi-stage cold rolling process using pyiron. As with every DAMASK simulation, pre-processing includes the creation of the representative volume element and the material definition. It contains elastic properties that are obtained from LAMMPS calculations. To simulate the actual rolling process, the rolling subclass was implemented in the pyiron-job class. Since the total height decrease in technical rolling processes can be very large, the implementation provides for optional regridding between rolling passes. This is also required for the coupling with OpenPhase for simulating recrystallization using pyiron. To ensure interoperability between evaluation and simulation tools, work was done on a semantic representation of pyiron workflows.
© 2025