Bundesanstalt für Materialforschung und -prüfung (BAM)
Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA) exhibits strong adhesion to nearly any kind of organic or inorganic surface and shows high ability for surface post-modification and secondary reactions. As a result, PDA has been widely used as a base adlayer to enable versatile surface chemistry and functionalization. It has shown great potential in wide range of applications including biomedical field (e.g., drug delivery, adhesives, photothermal therapy, bone and tissue engineering, cell adhesion, biosensing). However, implementation of PDA in microdevices is still hindered by insufficient spatial and temporal control of excited deposition methods.
In this work we present a novel approach to fabricate tunable micropatterned substrates where mussel-inspired chemistry provides base for various surface modification. Current approach applies Multiphoton Lithography to initiate local PDA formation, and, therefore, does not require use of microstamp or photomask. The microstructures of complex designs can be produced with the spatial resolution down to 0.8 μm. The desired design can be easily altered by adjusting the stl model or the fabrication code. Unlike the conventional deposition of PDA based on dopamine auto-oxidation, our method does not require presence of strong oxidants, metal ions or alkaline pH. PDA micropatterns can also act as a primer for covalent immobilization of protein enzymes based on a facile one-step surface post-modification with trypsin. Herein-demonstrated deposition approach will significantly facilitate applications of polydopamine and other mussel-inspired materials in microdevices and high-resolution active microcomponents (e.g., in MEMS and microfluidics).
Abstract
Erwerben Sie einen Zugang, um dieses Dokument anzusehen.
Poster
Erwerben Sie einen Zugang, um dieses Dokument anzusehen.
© 2025