Cell-instructive surfaces that deter bacterial biofilm formation while encouraging host tissue integration are highly desirable for application in medical implants where there is often a competition between tissue cell growth and bacterial colonisation at their surfaces. It has been known that nanotopography is a potent modulator to both eukaryotic and prokaryotic cells under complex physiological conditions. Inspired by cicada and dragonfly wings whose surfaces have shown to exhibit bactericidal nanotopographies, we have produced biomimetic protruding nanostructures on titanium and polymer substrates using a range of fabrication techniques [1-10]. In this talk, an overview of our recent development in the design of the nanostructured antimicrobial surfaces and the understanding of the mechano-bactericidal mechanisms will be provided [11-15]. Advantages of nanotopography-induced bactericidal surfaces in overcoming the issue of growing antimicrobial resistance will be highlighted. The translation of the nanostructured surfaces to 3D printed titanium will be discussed regarding the improved mechanical match (to minimise the stress shielding) and enhanced cell infiltration (to facilitate the tissue integration) [16,17]. Finally, the effect of enzyme functionalised nanostructures on antibiofilm performance and stem cells responses of 3DP titanium will be presented to demonstrate the potential of such cell-instructive surfaces for implant application.
References
[1] T. Diu, N. Faruqui, T. Sjostrom, B. Lamarre, H. F. Jenkinson, B. Su, M. G. Ryadnov, Scientific. Reports, 2014, 4, 7122.
[2] T. Sjöström, A. H Nobbs, B. Su, Materials Letters, 2016, 167, 22-26
[3] L. E. Fisher, Yang Yang, Muk-Fung Yuen, Wenjun Zhang, Angela H. Nobbs, Bo Su, Biointerphases, 2016, 11, 011014
[4] P. M. Tsimbouri, L. Fisher, N. Holloway, T. Sjostrom, A. H. Nobbs, R. M. D Meek, B. Su, M. J. Dalby, Scientific Reports, 2016, 6, 36857
[5] A. Tripathy, P. Sen, B. Su, W. H. Briscoe, Advances in Colloid and Interface Science, 2017, 248, 85–104
[6] Y. Cao, B. Su, S. Chinnaraj, S. Jana, L. Bowen, S. Charlton, P. Duan, N. S. Jakubovics, J. Chen, Scientific Reports, 2018, 8, 1071
[7] G. Hazell, L. E. Fisher, W. A. Murray, A. H. Nobbs, B. Su, Journal of Colloid & Interface Science, 2018,528, 388-398
[8] G. Hazell, P. W. May, P. Taylor, A. H. Nobbs, C. C. Welch, B. Su, Biomaterials Science, 2018, 6, 1424-1432
[9] C. Mas-Moruno, B. Su, M.J. Dalby, Advanced Healthcare Materials, 2019, 8, 1801103
[10] M. I. Ishak, X. Liu, J. Jenkins, A. H. Nobbs, B. Su, Coatings, 2020, 10, 756
[11] J. Jenkins, J. Mantell, C. Neal, A. Gholinia, P. Verkade, A. H. Nobbs, B. Su, Nature Communications, 2020, 11, 1626
[12] M. I. Ishak, J. Jenkins, S. Kulkarni, T.F. Keller, W. H. Briscoe, A. H. Nobbs, B. Su, Journal of Colloid and Interface Science, 2021, 604, 91–103
[13] J. Jenkins, M. I. Ishak, M. Eales, A. Gholinia, S. Kulkarni, T. F. Keller, P. W. May, A. H. Nobbs, B. Su, iScience, 2021, 24, 102818
[14] L. A. Damiati, M. P. Tsimbouri, V.-L. Hernandez, V. Jayawarna, M. Ginty, P. Childs, Y. Xiao, K. Burgess, J. Wells, M. R. Sprott, R.M. D. Meek, P. Li, R. O.C. Oreffo, A. Nobbs, G. Ramage, B. Su, M. Salmeron-Sanchez, M. J. Dalby, Biomaterials, 2022, 280, 121263
[15] M. I. Ishak, M. Eales, L. Damiati, X. Liu, J. Jenkins, M. J. Dalby, A. H. Nobbs, M. G. Ryadnov, B. Su, ACS Applied Nano Materials, 2023, 6, 2549−2559
[16] W. Xu, A. Yu, X. Lu, M. Tamaddon, M. Wang, J. Zhang, J. Zhang, X. Qu, C. Liu, B. Su, Bioactive Materials, 2021, 6, 1215–1222
[17] A. Yu, C. Zhang, W. Xu, Y. Zhang, S. Tian, B. Liu, J. Zhang, A. He, B. Su, X. Lu, Journal of Materials Science & Technology, 2022, 139, 47-58
Abstract
Erwerben Sie einen Zugang, um dieses Dokument anzusehen.
© 2025