AI MSE 2025
Lecture
19.11.2025
AI-supported fatigue assessment of SAE 4140 based on NDT-related measurement technologies.
SP

Sagar Sunil Patil (M.Sc.)

University of Applied Sciences Kaiserslautern, Institute QM3, Department of Materials Science and Materials Testing, D-67659 Kaiserslautern, Germany

Patil, S.S. (Speaker)¹; Weber, F.¹; Starke, P.¹; Bukhari, S.S.²
¹University of Applied Sciences Kaiserslautern, Institute QM3; ²ZF Friedrichshafen AG, Saarbrücken
Vorschau
18 Min.

This research presents an AI-supported approach for fatigue assessment of SAE 4140 steel using non-destructive testing (NDT) methods, including infrared thermography, digital image correlation (DIC), and electrical resistance measurements. Real-time data is analysed using machine learning techniques to identify early-stage fatigue indicators and support the development of predictive fatigue models. The aim is to enable faster, more efficient testing and condition-based evaluation of components under dynamic loading conditions.

Abstract

Abstract

Erwerben Sie einen Zugang, um dieses Dokument anzusehen.

Ähnliche Beiträge

© 2025