MSE 2022
Lecture
29.09.2022
Quantitative three-dimensional imaging of chemical short-range order via machine learning aided atom probe tomography
YL

Dr. Yue Li

Max-Planck-Institut für Nachhaltige Materialien GmbH

Li, Y. (Speaker)¹; Gault, B.¹
¹Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf
Vorschau
22 Min. Untertitel (CC)

Chemical short-range order (CSRO), referring to specific elements self-organising within a disordered matrix, can modify the properties of materials. CSRO is typically characterized via two-dimensional microscopy techniques that fail to capture three-dimensional atomistic architectures. Here, we present a machine-learning enhanced approach to reveal three-dimensional imaging of CSRO in body-centred-cubic Fe-18Al alloys. After validating our method against artificial data, we unearth non-statistical B2-CSRO instead of the generally-expected D03-CSRO. We propose quantitative correlations among annealing temperature, CSRO, and the nano-hardness and electrical resistivity. The proposed strategy can be generally employed to investigate short/medium/long-range ordering phenomena in a vast array of materials.

Abstract

Abstract

Erwerben Sie einen Zugang, um dieses Dokument anzusehen.

Ähnliche Beiträge

© 2025