MSE 2024
Poster
Semantic integration of diverse data in materials science: Assessing Orowan strengthening
BB

Dr.-Ing. Bernd Bayerlein

Bundesanstalt für Materialforschung und -prüfung (BAM)

Bayerlein, B. (Speaker)¹; Schilling, M.¹; von Hartrott, P.²; Waitelonis, J.³
¹Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin; ²Fraunhofer-Institut für Werkstoffmechanik (IWM), Freiburg; ³Leibniz-Institut für Informationsinfrastruktur (FIZ), Eggenstein-Leopoldshafen

This study applies Semantic Web technologies to advance Materials Science and Engineering (MSE) through the integration of diverse datasets. Focusing on a 2000 series age-hardenable aluminum alloy, we correlate mechanical and microstructural properties derived from tensile tests and darkfield transmission electron microscopy across varied aging times. An expandable knowledge graph, constructed using the Tensile Test and Precipitate Geometry Ontologies aligned with the PMD Core Ontology, facilitates this integration. This approach adheres to FAIR principles and enables sophisticated analysis via SPARQL queries, revealing correlations consistent with the Orowan mechanism. The study highlights the potential of semantic data integration in MSE, offering a new approach for data-centric research and enhanced analytical capabilities.

Abstract

Abstract

Erwerben Sie einen Zugang, um dieses Dokument anzusehen.

Poster

Poster

Erwerben Sie einen Zugang, um dieses Dokument anzusehen.

Ähnliche Beiträge

© 2025