MSE 2024
Highlight Lecture
24.09.2024
Automated analysis of data-rich experiments for microstructure imaging
CF

Dr. Christoph Freysoldt

Max-Planck-Institut für Nachhaltige Materialien GmbH

Freysoldt, C. (Speaker)¹; Saxena, A.¹; Wang, N.¹; Sreekala, L.¹; Saikia, U.¹; Gault, B.¹; Liebscher, C.¹
¹Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf
Vorschau
22 Min. Untertitel (CC)

Most modern engineering materials exhibit a complex microstructure that underpins the properties of the material in beneficial – or sometimes detrimental – ways. The on-going, rapid growth of available data from imaging experiments that resolve the microstructure, and the rise of machine-learning and artificial intelligence offer novel ways for doing scientific research with such data, but also challenge the traditional model-based understanding. Using examples from scanning transmission electron microscopy (STEM) and atom probe tomography (APT), I will show how combining data-centric methods and domain knowledge yields tools that reliably detect recurrent patterns in noisy raw data without a priori training, and generate coarse-grained descriptors for them.

Abstract

Abstract

Erwerben Sie einen Zugang, um dieses Dokument anzusehen.

Ähnliche Beiträge

© 2025